\qquad Date \qquad
APES Topic 11 - Energy Resources
Mr. Romano

APES Energy Problems

(for this practice, you may use your calculator)

The Basics:

Energy: \quad The basic unit of energy is a Joule (J).
Other units are kilojoule, calorie, British Thermal Unit (BTU), and therm.

$$
\text { 1000J = } 1 \text { kJ (you should know this already ...) }
$$

Power: Power is the rate at which energy is used. Power (watts) = Energy (joules) time (sec)

$$
\begin{aligned}
& 1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s} \quad(1 \mathrm{Watt}=1 \text { Joule per second }) \\
& 1 \mathrm{~kW}=1000 \mathrm{~J} / \mathrm{sec}
\end{aligned}
$$

1. A 100 Watt incandescent light bulb uses $100 \mathrm{~J} / \mathrm{sec}$ of electrical energy. If it is 5% efficient, then the bulb converts 5% of the electrical energy into light and 95% is wasted by being transformed into heat (ever felt a hot light bulb?)
a. How is the First Law of Thermodynamics referenced above?
b. How is the Second Law of Thermodynamics referenced above?

Practice Problems:

2. How much energy, in kJ , does a 75 Watt light bulb use then it is turned on for 25 minutes?
3. The Kilowatt Hour, or kWh, is not a unit of power but of energy.

Notice that kilowatt is a unit of power and hour is a unit of time. $\mathrm{E}=\mathrm{P} \times \mathrm{t}$ (rearranged from above). A kilowatt hour is equal to 1 kW delivered continuously for 1 hour (3600 seconds).
a. How many joules are equal to 1 kWh ?
b. How many kJ are equal to 1 kWh ?
c. Assume your electric bill showed you used 1355 kWh over a 30 -day period. Find the energy used, in kJ , for the 30 day period.
d. Find the energy used in J/day.
e. At the NY rate of $\$ 0.194 / \mathrm{kWh}$, what will your electric bill be for this month?
4. Remember: a 100-Watt incandescent light bulb is 5\% efficient.
a.) How much energy (in Joules) does it use in 12 hours of operation?
b.) Convert total energy use to kWh .
c.) How much energy does the bulb convert to light during 12 hours?
5. An electric clothes dryer has a power rating of 4000 W . Assume a family does 5 loads of laundry each week for 4 weeks. Assume each dryer load takes 1 hour.
a.) Find the energy used in J .
b.) Find the energy used in kWh .
c.) Find the operating cost for 4 weeks. Assume cost is $\$ 0.194 / \mathrm{kWh}$

