\qquad Date \qquad
APES Topic 8 - Population Dynamics
Mr. Romano

AIM: \quad What are different ways that populations are measured?
"Population dynamics" refers to the changes in a population in response to environmental stress or changes in environmental conditions. This topic introduces the basic concepts can be applied to all organisms, including humans.

1. population size - number of individuals (China \#1, India \#2, U.S. \#3)
2. population density - \# of individuals in a given space (land area or volume of water)
\(\left.\begin{array}{|c|}\hline density INDEPENDENT controls / limiting factors \\
factors that affect population regardless \\

of its density\end{array}\right]\)| Examples: |
| :---: |
| natural disasters |
| habitat destruction |
| seasonal temperature changes |

density DEPENDENT controls / limiting factors

factors that have a greater effect as population increases

Examples: competition for resources
predation
disease
excess waste products

4. age structure - proportion of individuals in each age group (prereproductive, reproductive, postreproductive)

Date \qquad
APES Topic 8 - Population Dynamics
Mr. Romano

AIM:
 How do populations change in size?

1. Population change is a result of the interplay between 3 factors:

A. Births - crude birth rate (CBR)
B. Deaths - crude death rate (CDR)

C. Migration (immigration and emigration)

2. Calculating Population Growth Rate (\%):

Formula: (CBR-CDR) x 100

Example 1:

What is the growth rate of a population that experiences 40 births per 1000 people per year and 20 deaths per 1000 people per year?

$$
:(C B R-C D R) \times 100\left[\begin{array}{cc}
\frac{40}{1000}-\frac{20}{1000}
\end{array}\right] \times 100 \quad\left[\frac{40-20}{1000}\right] \times 100=2.0 \%
$$

Example 2:

What is the growth rate of a population that experiences 15 births per 1000 people per year and 20 deaths per 1000 people per year?

$$
:\left(\text { CBR-CDR) } \times 100\left[\frac{15}{1000}-\frac{20}{1000}\right] \times 100\left[\frac{15-20}{1000}\right] \times 100=-0.5 \%\right. \text { (shows a population decline) }
$$

3. Local Population Change Factoring in Migration (\%):

Formula: : $[(C B R+i r)-(C D R+e r)] \times 100 \quad \frac{(13+8)}{1000}-\frac{(6+2)}{1000} \times 100 \quad \frac{13}{1000} \times 100=1.3 \%$

Example:

Use all of the following information to calculate a population's growth rate:
13 births per 1000 people per year
6 deaths per 1000 people per year
8 immigrants per 1000 people per year
2 emigrants per 1000 people per year

4. Zero Population Growth (ZPG): $\quad(C B R+i r)=(C D R+e r)$

5. Biotic Potential: (a.k.a. intrinsic rate of increase)

A. maximum rate at which a population could increase when there are no limits on its rate of growth (ideal conditions exist)
B. Biotic potential is influenced by:

1. age at which reproduction begins
2. \# of offspring per event
3. reproductive rate/frequency
4. timespan of organism's reproductive activity

Exponential Growth

C. Biotic Potential Graph:

"J-shaped" curve
6. Environmental Resistance - all of the factors acting jointly to limit the growth of a population
A. Examples of Environmental Resistance:

1. light
2. availability of nutrients
3. water
4. number of predators
5. physical space
6. disease
B. Carrying Capacity (\mathbf{K}) : is the maximum population size of a species that the environment can sustain indefinitely in a given space
C. Logistic Growth:

[^0]7. Population Overshoot:

Time

can lead to environmental degradation and lower the area's carrying capacity

8. Population Doubling Time:

$$
\text { Doubling Time Formula - "the rule of 70" } \quad \text { Doubling Time (years) }=\frac{70}{\% \text { growth rate }(r)}
$$

Example:
If the growth rate of a population is 2%, how many years until the population doubles?
Doubling Time $=\frac{70}{r}=\frac{70}{2}=35$ years

Name
Date \qquad
APES Topic 8 - Population Dynamics
Mr. Romano
AIM: What are the reproductive strategies that organisms use to maintain their population?

Characteristic	r-strategists	K-strategists
time to reach reproductive maturity	shorter	longer
\# of offspring per reproductive event	greater	fewer
parental care of offspring	little to none	care is given
lifespan	shorter	longer
body size	small	typically larger
population graph		
survivorship curve		"late loss" \square \% maximum lifespan
niche	generalists	tend to be specialists
example organisms	bacteria, rodents, insects, algae	elephants, whales, humans, eagles, rainforest trees, saguaro cactus
strategy summary	high reproductive rates to overcome massive loss of offspring	keep population stable near carrying capacity

[^0]: "S-shaped" curve

